RADIATION SAFETY IN FERROUS METALLURGY: SCRAP CONTROL, DEFECTOSCOPY, CONTROL INSTRUMENTATOIN, FIRE SENSORS
Abstract
Some work in the metallurgical industry involves the use of sources of ionizing radiation in the form of radioactive isotopes of cobalt, plutonium, americium, cesium, etc., and the use of special devices such as X-ray tubes or particle accelerators. Although the share of these works is insignificant in the total production, the handling of ionizing radiation sources, radioactive substances, requires special attention, careful observance of safety rules, use, if necessary, personal protective equipment and safe disposal of used devices. In the whole complex of works of this type it is possible to separate the main ones: control of scrap metal and products for the presence of radioactive contamination; the use of sources of ionizing radiation to detect external and internal defects of metal products; use of gamma radiation in control and measuring devices, first of all in level gauges; use of transuranic isotopes in fire detectors. Compliance with the requirements of the State sanitary and environmental rules and regulations on radiation safety in scrap metal operations is important both in terms of environmental safety (exclusion of radioactive contamination of the environment) and in terms of labor protection (prevention of stochastic effects of ionizing radiation on workers). During defectoscopy, high-energy radiation is used, which, if safety rules are not observed, can cause great damage to service personnel. As a rule, prevention of negative influence of radiation at work of defectoscopes is carried out first of all thanks to a safe design. Level gauges and fire detectors are the safest of the listed devices and devices. The article considers the above works with sources of ionizing radiation in ferrous metallurgy, directions of their development, safety measures.
References
2. Закон України «Про метрологію та метрологічну діяльність». [Чинний від 2014-06-05]. Відомості Верховної Ради. 2014. № 30. С. 1008.
3. ДСТУ 4121–2002. Метали чорні вторинні. Загальні технічні умови [Чинний від 2003-04-01]. Київ : Державний комітет України з питань технічного регулювання та споживчої політики, 2003. 33 с.
4. ДБН В.2.5-28-2018 Природне та штучне освітлення [Чинний від 2019-03-01]. Київ : Мінрегіон України, 2018. 137с.
5. Дефектоскопия. Энциклопедия физики и техники. URL: http://femto.com.ua.articles-/part_1/0979.html.
6. Горбунов В.И., Покровский А.В., Темник А.К. Бетатронный дефектоскоп для контроля сварнях соединений. Известия Томского политехнического института. 1986. Т. 296. С. 31–36.
7. Вайнберг И.А., Вайнберг Э.И. История, состояние и перспективы промышленной рентгеновской компьютерной томографии. В мире неразрушающего контроля. 2013. № 3. С. 125–141.
8. Обзор радиоизотопных уровнемеров. TD-UROVNEMER. URL: https://www.td-urov-nemer.ru/podderzhka/stati/radioizotopnye-urovnemery/
9. Пожарные извещатели. ИФТП. URL: https://iftp.ru/cat/Pozharnye-izveschateli/
10. 1151E – Дымовой радиоизотопный извещатель. TECHPORTAL. URL: http://www.-techportal.ru/material/?id=765
11. Audi G., Bersillon O., Blachot J., Wapstra A.H. The NUBASE evaluation of nuclear and decay properties. Nuclear Physics A. 2003. Vol. 729. P. 3–128.
12. Василенко И.Я. Радиоактивный цезий. Природа. 1999. № 3. С. 70–76.
13. Радиоактивные вещества. 12.3.7. Америций. URL: http://chemanalytica.com/book/-novyy_spravochnik_khimika_i_tekhnologa/11_radioaktivnye_veshchestva_vrednye_veshchestva_gigienicheskie_normativy/5087.
14. Америций-241. URL: https://gaz.wiki/wiki/ru/Americium-241