RESEARCH OF CYCLONE DESCRIPTIONS FOR GRY CLEANING OF GASES FROM DUST IN METALLURGY
Abstract
In the field of heat energy, the development and application of new, more efficient dust cleaningunits, which reduce emissions into the atmosphere and preserve some valuable resources forproduction, are of particular interest. It is known that with the growth of innovations intechnological enterprises, the number of harmful emissions into the atmosphere increases andthe ecological state of the environment deteriorates.The development and application of new,more efficient dust collection units that will help reduce emissions into the atmosphere and savesome very valuable resources for production is an urgent area of scientific research. With thegrowth of innovation in technological enterprises, the amount of harmful emissions into theatmosphere increases. The ecological state of the environment is also deteriorating. The mainanalytical dependencies have been developed, which are necessary for constructing amethodology for conducting experiments and calculating dust collection for specific operatingconditions. Methods for calculating cyclones as vortex devices and the study of the operation ofa cyclone for cleaning air from dust were investigated. On the basis of the basic theoreticalprinciples of heat and mass transfer and thermodynamics used during analytical research, amathematical model was proposed. Calculations of new designs of modern cyclones werepresented to obtain their geometric dimensions, resistance and efficiency of dust collection.Modern cyclones are designed to more efficiently remove dust from the air in a variety ofapplications. As a result of theoretical research, the analytical dependences of the mainparameters of the cyclone are determined, which allow to perform their experimental studiesand develop a method of calculating cyclones of new design, which will design dust collectorswith maximum efficiency for specific operating conditions.
References
2. Середа Б. П., Кожемякин Г. Б., Рыжков В. Г., Белоконь К. В. Влияние состава никельалюминиевого сплава с добавками кобальта, марганца и меди на структуру и удельную активность катализатора на их основе / Строительство. Материаловедение. Машиностроение. Сер. Стародубовские чтения. 2009. Вып. 48. С. 101-104.
3. Вязовский Е. С., Николаев Н. А. Особенности движения капель жидкости в массообменных аппаратах вихревого потока. Известия Вузов. Химия и химическая технология. 1972. Т. 15. С. 936-942.
4. Жук П. Ф., Юрчук І. А. Математичні методи в аеродинаміці: Навчальний посібник. Київ : НАУ, 2013. 315 с.
5. Волков Е. В., Суслов С. М. Об аэродинамическом сопротивлении циклонных камер при циркуляции твердой дисперсной фазы в ее объеме. Труды УПИ. Свердловск. 1974. Вып. 227. С. 58-60.
6. Чейлытко А. А., Павленко А. М. Особенности гидродинамики дисперсного потока в вихревых камерах. Збірка наукових праць ДДТУ, 2010. № 11. С. 76-82.
7. Vatin N. I., Sagittarius K. I. Air purification using cyclone type apparatuses. Young Scientist. 2017. Is. 13. Р. 165-168.
8. Shelukh Yu. E. Modern methods of air purification from industrial types of dust. Journal «Нeat power». 2012. Is. 10. Р. 146-174.
9. Malgin A. D., Scriabin G. M. Purification of gases and air from dust in the chemical industry. Journal of Modern High Technology. 2019, Is. 12. Р. 199-203.
10. Асламова В. С. Автоматизация расчетов пылеуловилей. Известия Томского политехнического университета. 2008. № 6. С. 28-31.
11. Асламова В. С. Автоматизированная система исследования циклонов и скрубберов. Известия Томского политехнического университета. 2010. № 8. С. 43-49.
12. Naumkin A. The characteristic and separation effects in a cylindrical cyclone dust collector. International Youth Scientific Conference on Heat and Mass Transfer in the Thermal Control System of Technical and Technological Energy Equipment, 2017; Tomsk; Vol. 110. Рр. 126-127.
13. Голубцов В. М. Расчет угла крутки на выходе из вихревых газовых горелок. Газовая промышленность. 1976. № 7. С. 26-32.
14. Голубцов В. М. К расчету числа лопаток завихрителей вихревых горелочных устройств. Теплоэнергетика. 1988. № 3. С. 73-75.