TRANSITION OF CARBON IMPURITY IN CRYSTAL SILICON OF SEMICONDUCTOR PURITY
Abstract
The carbon concentration in silicon of semiconductor purity may be at a level exceeding the content of other background impurities. Its presence significantly affects the processes of defect-impurity interaction during monocrystals growth and heat treatment, the device structures dynamic characteristics, as well as the formation of defective complexes in silicon when exposed to external factors (temperature, radiation, etc.). The behavior and sources analysis of the carbon impurity in semiconductor purity silicon obtained by carbothermal quartzite reduction, and at the stages of the Siemens process is completed. It was found that the electrolysis chlorine used in the synthesis of hydrogen chloride contains carbon-containing compounds: chloromethane, chloroethane, dichloromethane, carbon tetrachloride and others. Calculation and experimental studies based on long-term observations of the technological processes progress at existing industrial enterprises have been carried out. It was shown that when calculating distillation columns, one should focus on the separation coefficient of limiting impurities for volatile combinations. The transition coefficients and the forms of the presence of carbon and other impurities in the main and intermediate products of technological processes are determined. The role of carbon in the polycrystalline semiconductor purity silicon further stages of processing and using is analyzed. The level of impurities in raw materials (quartzites, reducing agents) is estimated, the material products balance involved in the synthesis of trichlorosilane is carried out, the principle for calculating distillation columns is described. The choice is justified and effective methods of carbon removal at the stages of the technology main stages for producing semiconductor silicon are presented. The level of maintenance of admixtures is appraised in raw material materials (quartzites, repairers), material balance of products, participating in the process of synthesis of trichlorosilane is conducted, principle of calculation of fractionators is expounded and the choice of effective methods of cleaning is reasonable.
References
2. Schmid F., Khattak C. P., Digges T. D., Kaufman L. Origin of SiC impurities in silicon crystals grown from the melt. J. Electrochtm. Sos. 1979. V. 126. P. 935-938.
3. Критская Т. В. Современные тенденции получения кремния для устройств электроники; монография. Издво ЗГИА. Запорожье. 2013. 353 c.
4. Технология полупроводникового кремния ; под ред. Э. С. Фалькевича. Москва. Металлургия, 1992. 408 с.
5. Nozaki T. Concentration and behavior of carbon in semiconductor. J. Electrochem. Soc. 1970. V. 117. P. 1566- 1569.
6. Реньян В. Р. Технология полупроводникового кремния; пер. с англ. под ред. Ю.М. Шишкова. Москва. Металлургия, 1969. 335 с.
7. Мякенькая Г. С., Гуцев Г. Л. Бистабильные комплексы дефектов с углеродной компонентой в кремнии. Физика и техника полупроводников. 1993. Т. 27. Вып. 1. С. 67-75.
8. Мурин Л. И., Маркевич В. П. О механизме подавления генерации термодоноров в кремнии примесными атомами углерода. Физика и техника полупроводников. 1993. С. 193-199.
9. Критская Т. В., Червоный И. Ф. Особенности поведения электрически активних и фонових примесей в процессе получения монокристаллов кремния. Металлургическая и горнорудная промышленность. 2003. №1. С.71-74.
10. Критская Т. В. Влияние углерода на электрофизические параметры и поведение примесей в монокристаллах кремния, выращенных по методу Чохральского. Металлургия: Научные труды ЗГИА. 2001. Вып. 5. С. 73-77.
11. Критская Т. В. Особенности поведения фоновой примеси углерода в монокристаллах кремния, легированных сурьмой. Извести. Вузов. Материалы электронной техники. 2003. № 4. С. 18-21.
12. Критская Т. В., Неймарк К. Н., Шкляр Б. Л. Связь кислорода и углерода со свирловыми дефектами в кремнии. Известия АН СССР. Неорганические материалы. 1986. Т. 22. № 6. С. 1038-1039.
13. Монокристаллический бездислокационный кремний А.с. 1455783 СССР: МКИ3 С30 В29/06, 15/00, 13/00. №012876/23-26; заявл. 03.12.85; опубл. 27.08.86.
14. Gaworzewski P., Schmalz K. Oxygen-related donors formed at 600 °C in silicon in dependence on oxygen and carbon content. Phys. Stat. Sol.(a). 1983. V. 77. № 2. P. 571-582.