RECOVERY OF LITHIUM AND OTHER METALS FROM THE SCRAP OF SPENT LITHIUM BATTERIES

  • German Kolobov Engineering Institute of Zaporizhzhia National University
  • Oleksii Kirichenko Engineering Institute, of Zaporizhzhia National University
  • Yuriy Mosejko Engineering Institute, of Zaporizhzhia National University
  • Vasyl Pavlov PJSC «Institute of Titanium»
  • Vira Panova Engineering Institute, of Zaporizhzhia National University
  • Konstantin Pecheritsa PJSC PGS «Energy»
  • Alexey Bubinetts PJSC PGS «Energy»
Keywords: batteries, lithium, scrap, processing, recovery, hydrometallurgy, pyrometallurgy

Abstract

In paper, the technologies used to recovery lithium and other metals from the scrap of spent lithium batteries are reviewed. To solubilize lithium and other metals, aqueous or acid leaching (sometimes bioleaching) of pre-ground scrap is used. Metals are recovered from the solution by methods of chemical deposition (including hydrolysis, electrodeposition, extraction using extractants N1923, PAN, 1N2N, Cyanex 272); ion exchange on sorbents Amberlite IR120, molecular sieve 13X, aluminosilicate MCM41, activated carbon; electrodialysis using bipolar membranes. For the processing of scrap of lithium storage batteries, such pyrometallurgical methods as pyrolysis and melting are also used. Because lithium batteries have received unprecedented development in recent years, most new recycling work for lithium-containing recyclable materials is dedicated to the recycling of waste lithium batteries, which is a valuable secondary resource for removing lithium and other metals. This paper reviews the technologies used to extract lithium and other metals (cobalt, nickel, copper, manganese) from scrap waste lithium batteries. To convert lithium and other metals into solution water or acid leaching (hydrochloric, sulfuric, ascorbic acids), sometimes bioleaching of pre-crushed scrap are used. Metals are recovered from the solution by chemical precipitation (including hydrolysis; electrodeposition; extraction using N1923, PAN, 1N2N, Cyanex 272 extractants); ion exchange on sorbents (Amberlite IR120, molecular sieve 13X, aluminosilicate MSM41, activated carbon); electrodialysis using bipolar membranes. Pyrometallurgical methods such as pyrolysis and melting are also used to process lithium battery scrap. The melting of lithium battery scrap forms a slag consisting of aluminum, calcium, lithium, magnesium, manganese and silicon oxides. An important task is to select a slag of such composition that the maximum amount of lithium is concentrated in the LiAlO2 compound. The possibility of obtaining aluminum and magnesium silicate of lithium is shown, in which the content of lithium is 10 %, while in the spodumene it is 3.7 %. Such slag can be enriched by flotation using collectors for oxide minerals. At rapid cooling of the slag, its structure is crushed and lithium can be removed by hydrometallurgical method.

References

1. Talens P. L., Villalba M. G., Ayres R. U. Lithium: Sources, Production, Uses, and Recovery Outlook. JOM: J. Miner., Metals and Mater. Soc. 2013. Vol. 65, No. 8. Р. 986-996.
2. Зуева Т. И. Литий. Минерально-сырьевая база и перспективы развития мирового рынка. Повышение инвестиционной привлекательности комплексных редкометальных месторождений с целью подготовки их к лицензированию и освоению : материалы Всерос. научн.-практ. конф. Москва : 2014. С. 20-21.
3. Кулифеев В. К., Тарасов В. П., Криволапова О. Н. Утилизация литиевых химических источников тока. Москва : МИСиС, 2010. 262 с.
4. Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries / P. Zhang, T. Yokoyama, O. Itabashi etc. Hydrometallurgy. 1998. Vol. 47, No. 2-3. Р. 259-271.
5. Separаtion process of rare metals from hydrochloric acid liquors of spent lithium batteries by solvent extraction / T. Suzuki, T. Nakamura, Y. Inoue etc. 26 International Mineral Processing Congress (IMPC 2012). New Delhi, 2012. Vol. 1. P. 112.
6. Wu, Fang. Recovery of cobalt and lithium from spent lithium-ion secondary batteries. Chin. J. Nonferrous Metals. 2004. Vol. 14, No. 4. P. 697-701.
7. Lee C. K., Rhee K. I. Preparation of LiCoO2 from spent lithium-ion batteries. J. Power Sources. 2002. Vol. 109, No. 1.Р. 17-21.
8. Lee C. K., Rhee K. I. Reductive leaching of cathodic active materials from lithium ion battery wastes. Hydrometallurgy. 2003. Vol. 68, No. 1-3. Р. 5-10.
9. Shin S. M., Kim N. H., Sohn J. S. Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy. 2005. Vol. 79, No. 3-4. Р. 172-181.
10. Процесс повторного использования в производственном цикле наборов гальванических элементов и батарей с литиевыми анодами. Заявка 2868603 Франция. 2005.
11. Method of recovery of various metals from spent batteries. Pat. 6835228 USA. 2004.
12. Миклушевский В. В. Технология утилизации элементов системы Li/MnO2 типа МРЛ. Цветные металлы. 2003. № 2. С. 74-76.
13. Миклушевский, В. В., Ватулин И. И., Кулифеев В. К. Технология комплексной переработки вторичного литийсодержащего сырья. Научно-технологическое обеспечение инновационной деятельности предприятий, институтов и фирм в металлургии : материалы семинара. Т. 2. Моснва : «Учеба» МИСиС, 2004. С. 651-655.
14. Wang R. C., Lin Y. C., Wu S. H. A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy. 2009. Vol. 99, No. 3-4. Р. 194-201.
15. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl) / Y. Guo, F. Li, H. Zhu etc. Waste Manag. 2016. Vol. 51. P. 227-233.
16. Takacova Z., Havlik T., Kukurugya F., Orac D. Cobalt and lithium recovery from active mass of spent Li-ion batteries: Theoretical and experimental approach. Hydrometallurgy. 2016. Vol. 163. P. 9-17.
17. Pinna E., Ruiz M., Ojeda M. Rodriguez M. Cathodes of spent Li-ion batteries: Dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors. Hydrometallurgy. 2017. Vol. 167. P. 66-71.
18. Wang X., Zhang R., Zhang Y. Atomic-economic recovery of aluminum, iron and lithium from spent LiFePO4 battery. Chin. J. Nonferrous Metals. 2018. Vol. 28, No. 9. P. 1824-1831.
19. Zeng X., Li J., Shen B. Novel approach to recover cobalt and lithium from spent lithium-ion batteries using oxalic acid. Hazardous Mater. 2015. Vol. 295. P. 112-118.
20. Spent lithium-ion battery recycling - reductive ammonia leaching of metals from cathode scrap by sodium sulphite / X. Zheng, W. Gao, X. Zhang etc. Waste Manag. 2017. Vol. 60. P. 680-688.
21. Baric S. Prabaharan G., Kumat B. An innovative approach to recover the metal values from spent lithium-ion batteries. Waste Manag. 2016. Vol. 51. P. 222-226.
22. Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment / L. Li, J. B. Dunn, X. X. Xiao etc. J. Power Sources. 2013. Vol. 233. P. 180-189.
23. Leaching of electrodic powders from lithium ion batteries: Optimization of operating conditions and effect of physical pretreatment for waste fraction retrieval / F. Pagnanelli, E. Moscardini, P. Altimari etc. Waste Manag. 2017. Vol. 60. P. 706-715.
24. Wang X., Gaustad G., Babbitt C. W. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation. Waste Manag. 2016. Vol. 51. P. 204-213.
25. Honggang W.. Bernd F. Innovative recycling of Li-based electric vehicle batteries World of Metallurgy-Erzmetall. 2013. Vol. 66, No. 3. Р. 161-167.
26. Wang M., Zhang C., Zhang F. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach. Waste Manag. 2016. Vol. 51. P. 239-244.
27. Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries / Y. Yang, G. Huang, S. Xu etc. Hydrometallurgy. 2016. Vol. 165. P. 390-396.
28. Paulino J. F., Busnardo N. G., Afonso J. C. Recovery of valuable elements from spent Li-batteries. J. Hazardous Mater. 2008. Vol. 150, No. 3. Р. 843-849.
29. Clean process of recovering metals from waste lithium ion batteries Pat. 6514311 USA, МПК7 С 25 С 1/08, С 25 С 1/12. № 09/984594; dicl. 30.10.2001; publ. 04.02.2003.
30. Method for recycling spent lithium metal polymer rechargeable batteries and related materials Pat. 7192564 USA, MПK C 01 D 15/08 (2006.01), C 01 G 31/00 (2006.01), H 01 M 10/42 (2006.01). № 10/129112; dicl. 13.09.2001; publ. 20.03.2007.
31. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries / L. Li, J. Lu, Y. Ren etc. J. Power Sources. 2012. Vol. 218. P. 21-27.
32. Cai G., Fang K., Ng K., Wibowo C. Process development for the recycle of spent lithium ion batteries by chemical precipitation. Ind. аnd Chem. Res. 2014. Vol. 53, No. 47. P. 18245-18259.
33. Synthesis and performance of spherical LiNixCoyMn!-x-yO2 regenerated from nickel and cobalt scraps / Y. Yang, G. Huang, M. Xie etc. Hydrometallurgy. 2016. Vol. 165. P. 358-369.
34. Hydrometallurgical separation of copper and cobalt from lithium-ion batteries using aqueous two-phase systems / D. Leite, P. Carvalho, L. Lemos etc. Hydrometallurgy. 2017. No. 169. P. 224-252.
35. Recovery of Ti and Li from spent lithium titanate cathodes by a hydrometallurgical process / T. Wenjiang, C. Xiangping, Z. Tao etc. Hydrometallurgy. 2014. Vol. 147-148. P. 210-216.
36. Separation of lithium and cobalt from waste lithium-ion batteries via bipolar membrane electrodialysis coupled with chelation / A. Iizuka, Y. Yamashita, H. Nagasawa etc. Separ. And Purif. Technol. 2013. Vol. 113. P. 33-41.
37. Способ гидрометаллургического обратного извлечения лития из фракции гальванических батарей, содержащей фосфат лития и железа. Пат. 2638481 Рос. Федерации, МПК С 22 В 26/12 (2006.01), С 22 В 7/00 (2006.01), С 22 В 3/06 (2006.01). № 2015117525; заявл. 09.10.2013; опубл. 13.12.2017.
38. Способ гидрометаллургического обратного извлечения лития из фракции гальванических батарей, содержащей оксид лития и марганца Пат. 2639416 Рос. Федерации, МПК С 22 В 26/12 (2006.01), С 22 В 7/00 (2006.01), С 22 В 3/04 (2006.01), С 22 В 47/00 (2006.01). № 2015117381; заявл. 09.10.2013; опубл. 31.12.2017.
39. Способ гидрометаллургического извлечения лития, никеля, кобальта из фракции отработанных гальванических элементов, содержащей оксид лития и переходного металла Пат. 2648807 Рос. Федерации, МПК С 22 В 26/12 (2006.01), С 22 В 23/00 (2006.01), С 22 В 3/06 (2006.01), С 22 В 7/00 (2006.01). № 2015117379; заявл. 09.10.2013; опубл. 28.03.2018.
40. Lithium recovery from aqueous solution by sorption/desorption / J. Lemaire, L. Svecova, F. Lagallarde etc. Hydrometallurgy. 2014. Vol. 143. Р. 1-11.
41. Process controls for improving bioleaching performance of both Li and Co from spent lithiu m ion batteries at both pulp density and its thermodynamics and kinetics exploration / Z. Niu, Y. Zou, B. Xin etc. Chemosphere. – 2014. Vol.109. P.92-98.
42. Bahaloo-Horeh N., Mousavi S. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic produced by Aspergillus niger. Waste Manag. 2017.Vol. 60. P. 666-679.
43. Оптимизация условий биовыщелачивания использованных литиево-ионных батарей бациллами Thiobacillus ferrooxidans / D. Xiaorong, Z. Guisheng, L. Zhuo etc. Huanjing huaxue = Environ. Chem. 2012. Vol. 31, No. 9. Р. 1381-1386.
44. Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction / D. Bertuol, C. Machado, M. Silva etc. Waste Manag. 2016. Vol. 51. P. 245-251.
45. Swain B., Lee J.-C., Lee C.-G. Valorization of cobalt from waste lib cathode through cobalt oxalate and cobalt oxide synthesis by leaching-solvent extract-precipitation stripping. Arch. Met. And Mater. 2018. Vol. 63, No. 2. P. 1037-1042.
46. Cobalt products from real waste fractions of end of life lithium ion batteries / F. Pagnanelli, E. Moscardini, P. Altimari etc. Waste Manag. 2016. Vol. 51. P. 214-221.
47. Chagnes A. Pospiech B. A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. J. Chem. Technol. аnd Biotechnol. 2013. Vol. 88, No. 7. Р. 1191-1199.
48. Sun L., Qiu K. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithiumion batteries. Waste Manag. 2012. Vol. 32, No. 8. Р. 1575-1582.
49. Sun, L., Qiu K. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. J. Hazardous Mater. 2011. Vol. 194. P. 378-384.
50. Elwert T., Strauss K., Schirmer T., Coldmann D. Phase composition of high lithium slags from the recycling of lithium ion batteries. World of Metallurgy-Erzmetall. 2012. Vol. 65, No. 3. Р. 163-171.
51. Theoretical prediction and experimental verification of conditional windows for smelting reduction process of spent lithium-ion batteries / G. Ren, Y. Fan, M. Xie etc. J. Mater. and Met. 2016. Vol. 15, No. 2. P. 147-151.
Published
2020-03-01
How to Cite
Kolobov , G., Kirichenko , O., Mosejko , Y., Pavlov , V., Panova , V., Pecheritsa , K., & Bubinetts , A. (2020). RECOVERY OF LITHIUM AND OTHER METALS FROM THE SCRAP OF SPENT LITHIUM BATTERIES. Scientific Journal "Metallurgy", (2(42), 35-43. Retrieved from http://metal.journalsofznu.zp.ua/index.php/journal/article/view/30