SIMULATION OF STEEL OXIDATION USING Mn, Si, Al IN THE COMPUTING ENVIRONMENT OF MathCAD USING DIFFERENT METHODS OF VISUALIZING CALCULATION RESULTS

Keywords: modeling, computational experiment, MathCAD, deoxidation, optimal deoxidizer concentration.

Abstract

For modeling the deoxidation of traditional impurities (Mn, Si, Al), a method of using MathCAD is proposed, which includes various elements of calculation and visualization of the obtained results. It is shown by the method of a computational experiment that when the deoxidizer, R, is introduced, that is, an increase in [R], there is a nonlinear decrease in the concentration of dissolved oxygen [O] and the modulus of the numerical value (d[O])/dR. Analysis of the nature of the change in the deoxidation reaction rate, d/dR(d[O])/dR, indicates the existence of a concentration R at which a “break” in the dependence is observed (a decrease in the slope of the function d/(dR)(d[O])/ dR=f([R]), that is a pronounced decrease in the rate of change in the concentration [O]. In other words, starting from a certain value of [R], increasing the deoxidizer concentration is not effective. Optimal calculated concentrations of deoxidizers are proposed. The marginally necessary concentrations of deoxidizers [mass %], at which the rate of reduction of the content of [O] dissolved in steel is practically zero, are: [Mn] ≈ 0.85; [Si] ≈3.35; [Al]≈0.05. The technological concentration of [Al] can probably be reduced to ~0.015% (the “break-even” point), which theoretically allows [O] to be reduced to ~1.7·10-3 ppm at t 1600 °C. It is reasonable to assume that for deoxidation for steel using silicon, the optimal concentration is [Si] 0.5%. For manganese, this approach is not acceptable, for a weak deoxidizer, it is impractical to use the second “break” point, because at a concentration of [Mn] ~0.207%, [O] ~0.2% is observed in the calculation experiment, and if we apply the numerical value [Mn] ~0.85%, then the calculated value [O] ~0.05%, that is, four times less. The proposed modeling technique makes it possible to determine the maximum allowable concentration of dissolved in metal silicon [Si] used for its deoxidation, which corresponds to its concentration, at which a change in the direction of the binding reaction [O] is observed according to the principle of Le Chatelier – Brown. At [Si] 3.35 mass %, the rate of deoxidation is practically zero. A change (increase) in the concentration of [Si] leads to a disturbance of the equilibrium in the direction opposing the change made, namely: an increase in the concentration of the deoxidizer leads to an increase in the rate of increase in the concentration of oxygen.

References

Echterhof, T., Ohno, K.-I., Visuri, V.-V. Modeling and Simulation of Metallurgical Processes in Ironmaking and Steelmaking. Metals, 2022. № 12. Р. 1185.

Kuniharu Ito, Tetsuaki Kurokawa, Masanori Shioya, Hirokazu Kobayashi, Masatoshi Ago, Junichi Mori. Production Planning and Scheduling Technology for Steel Manufacturing Process. Nippon steel & sumitomo metal technical report, 2019. No. 121. Р. 31–47.

Wendelstorf Jens. Metallurgical Process Modelling. STEELSIM – 2007. Graz/Seggau, Austria. Р. 433–438.

Прудковский Б.А. Зачем металлургу математические модели? / Отв. ред. П.И. Полухин. Изд. 3-е. Москва : Издательство ЛКИ, 2010. 200 с.

Звонарев С.В. Основы математического моделирования. Екатеринбург : Изд-во Урал. ун-та, 2019. 112 с. 6. Radi Romansky. An Approach for Mathematical Modeling and Investigation of Computer Processes at a Macro Level. Mathematics, 2020. № 8. Р. 1838.

Tilliander A., Ersson M., Jonsson L. and Jönsson P. Fundamental Mathematical Modeling of Metallurgical Processes – Current and Future Situation. Conference : SCANMET III, 2008. Р. 333–346.

Richard Turner. Modeling and Simulation of Metal Processing. Metals, 2022. № 12. Р. 231.

Бахрушин В.Є. Математичні основи моделювання систем. Запоріжжя : КПУ, 2009. 224 с.

Brent Maxfiel. Engineering With Mathcad. Using Mathcad to Create and Organize Your Engineering Calculations. Butterworth-Heinemann is an imprint of Elsevier : Science and Technology Rights Department in Oxford, 2006. 494 p.

Биткін С.В., Критська Т.В. Методика статистичної оцінки результатів технологічного експерименту в чорній металургії у середовищі «STATISTICA» та «MathCAD». Металургія. Запоріжжя : ЗДІА, 2020. Вип. 1. С. 103–109.

Казаков А.А., Рябошук С.В. Физико-химические основы сталеплавильных процессов. Санкт-Петербург : Издательство Политехнического университета, 2013. 44 с.

Seshadri Seetharaman. Fundamentals of metallurgy. Cambridge England : Woodhead Publishing Limited and CRC Press LLC, 2005. 589p.

Дильдин А.Н., Соколова Е.В. Теория металлургических процессов. Челябинск : Изд. ЮУрГУ, 2007. 33 с. 15. Юсупходжаев Анвар Абдуллаевич, Хожиев Шохрух Тошпулатович, Мирзажонова Саодат Бакиджановна. Анализ состояния системы в металлургии : монография. LAP LAMBERT Academic Publishing (brand of OmniScriptum S.R.L. Str. Armeneasca 28/1, office 1 Chisinau, MD-2012, Republic of Moldova), 2020. 179 c.

Shamsuddin M. Physical Chemistry of Metallurgical Processes. The Minerals, Metals & Materials Society. Published by John Wiley & Sons, Inc., Hoboken, New Jersey, USA. Copyright, 2016. 617 p.

Яковлев Д.С. Повышение качества сварных соединений электросварных труб при исполь- зовании порошковых проволок : дис. … канд. техн. наук : спец. 05.02.10 – сварка, родственные процессы и технологии. Южно-Уральский государственный университет. Челябинск, 2016.

André Luiz Vasconcellos da Costa e Silva, Flávio Beneduce Neto, Roberto Ribeiro de Avillez. Liquid iron deoxidation by aluminum: a brief review of experimental data and thermodynamic description. Tecnologia em metalurgia, materiais e mineracao. São Paulo, 2015. v. 12, n. 4. P. 267–273.

Ghosh Ahindra, Chatterjee Amit. Ironmaking and Steelmaking. Theory and Practice. PHI Learning Private Limited, New Delhi, 2008. P. 472.

Published
2023-01-26
How to Cite
Bytkin, S., & Kriytska, T. (2023). SIMULATION OF STEEL OXIDATION USING Mn, Si, Al IN THE COMPUTING ENVIRONMENT OF MathCAD USING DIFFERENT METHODS OF VISUALIZING CALCULATION RESULTS. Scientific Journal "Metallurgy", (1), 4-15. https://doi.org/10.26661/2071-3789-2022-1-01