SIMULATION OF STEEL OXIDATION USING Mn, Si, Al IN THE COMPUTING ENVIRONMENT OF MathCAD USING DIFFERENT METHODS OF VISUALIZING CALCULATION RESULTS
Abstract
For modeling the deoxidation of traditional impurities (Mn, Si, Al), a method of using MathCAD is proposed, which includes various elements of calculation and visualization of the obtained results. It is shown by the method of a computational experiment that when the deoxidizer, R, is introduced, that is, an increase in [R], there is a nonlinear decrease in the concentration of dissolved oxygen [O] and the modulus of the numerical value (d[O])/dR. Analysis of the nature of the change in the deoxidation reaction rate, d/dR(d[O])/dR, indicates the existence of a concentration R at which a “break” in the dependence is observed (a decrease in the slope of the function d/(dR)(d[O])/ dR=f([R]), that is a pronounced decrease in the rate of change in the concentration [O]. In other words, starting from a certain value of [R], increasing the deoxidizer concentration is not effective. Optimal calculated concentrations of deoxidizers are proposed. The marginally necessary concentrations of deoxidizers [mass %], at which the rate of reduction of the content of [O] dissolved in steel is practically zero, are: [Mn] ≈ 0.85; [Si] ≈3.35; [Al]≈0.05. The technological concentration of [Al] can probably be reduced to ~0.015% (the “break-even” point), which theoretically allows [O] to be reduced to ~1.7·10-3 ppm at t 1600 °C. It is reasonable to assume that for deoxidation for steel using silicon, the optimal concentration is [Si] 0.5%. For manganese, this approach is not acceptable, for a weak deoxidizer, it is impractical to use the second “break” point, because at a concentration of [Mn] ~0.207%, [O] ~0.2% is observed in the calculation experiment, and if we apply the numerical value [Mn] ~0.85%, then the calculated value [O] ~0.05%, that is, four times less. The proposed modeling technique makes it possible to determine the maximum allowable concentration of dissolved in metal silicon [Si] used for its deoxidation, which corresponds to its concentration, at which a change in the direction of the binding reaction [O] is observed according to the principle of Le Chatelier – Brown. At [Si] 3.35 mass %, the rate of deoxidation is practically zero. A change (increase) in the concentration of [Si] leads to a disturbance of the equilibrium in the direction opposing the change made, namely: an increase in the concentration of the deoxidizer leads to an increase in the rate of increase in the concentration of oxygen.
References
Echterhof, T., Ohno, K.-I., Visuri, V.-V. Modeling and Simulation of Metallurgical Processes in Ironmaking and Steelmaking. Metals, 2022. № 12. Р. 1185.
Kuniharu Ito, Tetsuaki Kurokawa, Masanori Shioya, Hirokazu Kobayashi, Masatoshi Ago, Junichi Mori. Production Planning and Scheduling Technology for Steel Manufacturing Process. Nippon steel & sumitomo metal technical report, 2019. No. 121. Р. 31–47.
Wendelstorf Jens. Metallurgical Process Modelling. STEELSIM – 2007. Graz/Seggau, Austria. Р. 433–438.
Прудковский Б.А. Зачем металлургу математические модели? / Отв. ред. П.И. Полухин. Изд. 3-е. Москва : Издательство ЛКИ, 2010. 200 с.
Звонарев С.В. Основы математического моделирования. Екатеринбург : Изд-во Урал. ун-та, 2019. 112 с. 6. Radi Romansky. An Approach for Mathematical Modeling and Investigation of Computer Processes at a Macro Level. Mathematics, 2020. № 8. Р. 1838.
Tilliander A., Ersson M., Jonsson L. and Jönsson P. Fundamental Mathematical Modeling of Metallurgical Processes – Current and Future Situation. Conference : SCANMET III, 2008. Р. 333–346.
Richard Turner. Modeling and Simulation of Metal Processing. Metals, 2022. № 12. Р. 231.
Бахрушин В.Є. Математичні основи моделювання систем. Запоріжжя : КПУ, 2009. 224 с.
Brent Maxfiel. Engineering With Mathcad. Using Mathcad to Create and Organize Your Engineering Calculations. Butterworth-Heinemann is an imprint of Elsevier : Science and Technology Rights Department in Oxford, 2006. 494 p.
Биткін С.В., Критська Т.В. Методика статистичної оцінки результатів технологічного експерименту в чорній металургії у середовищі «STATISTICA» та «MathCAD». Металургія. Запоріжжя : ЗДІА, 2020. Вип. 1. С. 103–109.
Казаков А.А., Рябошук С.В. Физико-химические основы сталеплавильных процессов. Санкт-Петербург : Издательство Политехнического университета, 2013. 44 с.
Seshadri Seetharaman. Fundamentals of metallurgy. Cambridge England : Woodhead Publishing Limited and CRC Press LLC, 2005. 589p.
Дильдин А.Н., Соколова Е.В. Теория металлургических процессов. Челябинск : Изд. ЮУрГУ, 2007. 33 с. 15. Юсупходжаев Анвар Абдуллаевич, Хожиев Шохрух Тошпулатович, Мирзажонова Саодат Бакиджановна. Анализ состояния системы в металлургии : монография. LAP LAMBERT Academic Publishing (brand of OmniScriptum S.R.L. Str. Armeneasca 28/1, office 1 Chisinau, MD-2012, Republic of Moldova), 2020. 179 c.
Shamsuddin M. Physical Chemistry of Metallurgical Processes. The Minerals, Metals & Materials Society. Published by John Wiley & Sons, Inc., Hoboken, New Jersey, USA. Copyright, 2016. 617 p.
Яковлев Д.С. Повышение качества сварных соединений электросварных труб при исполь- зовании порошковых проволок : дис. … канд. техн. наук : спец. 05.02.10 – сварка, родственные процессы и технологии. Южно-Уральский государственный университет. Челябинск, 2016.
André Luiz Vasconcellos da Costa e Silva, Flávio Beneduce Neto, Roberto Ribeiro de Avillez. Liquid iron deoxidation by aluminum: a brief review of experimental data and thermodynamic description. Tecnologia em metalurgia, materiais e mineracao. São Paulo, 2015. v. 12, n. 4. P. 267–273.
Ghosh Ahindra, Chatterjee Amit. Ironmaking and Steelmaking. Theory and Practice. PHI Learning Private Limited, New Delhi, 2008. P. 472.