EFFECT OF FEED MIX PROPERTIES AND SURFACTANT APPLICATION ON ENERGY CONSUMPTION AND PRODUCTIVITY OF AN INDURATION MACHINE: INDUSTRIAL ASSESSMENT AND PREDICTIVE MODELLING

Keywords: iron ore pellets; induration machine; surfactants; feed mix; energy consumption; natural gas; electricity; concentrate fineness; moisture content; productivity; industrial trials; regression modeling

Abstract

The article investigates the energy consumption of an induration machine, which performs the full cycle of thermal treatment of iron ore pellets – from drying and preheating to induration, heat recovery, and cooling. Particular attention is given to the influence of the physicochemical properties of the feed mix, specifically its moisture content, particle size distribution, and the use of surfactants (surface-active agents), on the overall specific consumption of electric power and natural gas, as well as on the unit’s productivity. Industrial- scale trials were conducted at one of the leading iron ore beneficiation plants in the Kryvbas region in connection with a transition from a baseline (in-house) concentrate to raw material produced by another regional plant, which had been pre-treated with a nonionic surfactant.It was found that the increased fineness and hydrophilicity of the new concentrate required additional moisture to be added to the feed mix, which significantly affected the thermal regime of the machine and overall energy consumption. Based on the collected experimental data, regression models were developed to quantitatively predict the specific consumption of electricity and gas as functions of technological parameters. The results demonstrate that the key influencing factors are the moisture content of the feed mix and the daily productivity of the induration unit. An increase of 17.73% in specific electricity consumption and 33.25% in specific natural gas consumption was recorded, accompanied by a 9.55% reduction in throughput. These findings are relevant for professionals in the fields of energy management, power engineering, and thermal analysis in metallurgy, particularly when designing strategies to optimize energy consumption under industrial operating conditions.

References

1. Hirlekar O., Kolte A. and Vasa L. Transition in the mining industry with green energy: Economic dynamics in mining demand. Resources Policy, 2025. Vol. 100. Art. № 105409. doi: 10.1016/j.resourpol.2024.105409.
2. Hooey L., Riesbeck J., Wikström J.-O. and Björkman B. Role of ferrous raw materials in the energy efficiency of integrated steelmaking. ISIJ International, 2014. Vol. 54. № 3. Р. 596–604. doi: 10.2355/isijinternational.54.596.
3. He K., and Wang L. A review of energy use and energy-efficient technologies for the iron and steel industry. Renewable and Sustainable Energy Reviews, 2016. Vol. 70. P. 1022–1039. doi: 10.1016/j.rser.2016.12.007.
4. de Moraes S. L., de Lima J. R. B., and Ribeiro T. R. Iron Ore Pelletizing Process: An Overview. Iron Ores and Iron Oxide Materials, 2018. V. Shatokha, Ed. London, U.K.: IntechOpen. doi: 10.5772/intechopen.73164.
5. Miranda T., Montero I., Sepúlveda F. J., Arranz J. I., Rojas C. V. and Nogales S. A review of pellets from different sources/ Materials, 2015. Vol. 8. № 4. P. 1413–1427. doi: 10.3390/ma8041413.
6. Kruzhilko O., Maystrenko V., Tkalych I., Polukarov Yu., Kalinchyk V. P., Neklonskyi I. and Ryzhchenko O. Study of the harmful factors influence on the occupational risk level: The example of the Ukrainian mining industry. Journal of Achievements in Materials and Manufacturing Engineering, 2022. Vol. 110. № 1. P. 35–41. doi: 10.5604/01.3001.0015.7029.
7. Kruzhilko O., Volodchenkova N., Maystrenko V., Bolibrukh B., Kalinchyk V. P., Zakora A., Feshchenko and Yeremenko S. Mathematical modelling of professional risk at Ukrainian metallurgical industry enterprises. Journal of Achievements in Materials and Manufacturing Engineering, 2021. Vol. 108. №. 1. P. 35–41. doi: 10.5604/01.3001.0015.4797.
8. Azimova L. and Mirbabayeva N. Method for reducing fuel consumption when roasting pellets from magnetite iron ore concentrate/ Engineering Headway, 2024. Vol. 7. P. 45–50. doi: 10.4028/p-hG5G1U.
9. Iljana M., Paananen T., Mattila O., Kondrakov M. and T. Fabritius. Effect of iron ore pellet size on metallurgical properties. Metals, 2022. Vol. 12. №. 2. P. 302. doi: 10.3390/met12020302.
10. Savchenko I., Shapoval O., Bakharev V., Chupilko T., Babaryka M. and Dzyna N. Mathematical model of rheological processes of composite materials deformation. Proc. 2022 IEEE 4th Int. Conf. Modern Electrical and Energy Systems (MEES), Kremenchuk, Ukraine, Oct. 2022. P. 01–06, doi: 10.1109/MEES58014.2022.10005658.
11. Eisele T. C. and Kawatra S. K. A review of binders in iron ore pelletization. Mineral Processing and Extractive Metallurgy Review, 2010. Vol. 24. № 1. P. 1–90. doi: 10.1080/08827500306896.
12. Koval A. D., Efremenko V. G., Brykov M. N., Andrushchenko M. I., Kulikovskii R. A. and Efremenko A. V. Principles of development of grinding media with increased wear resistance. Part 2. Optimization of steel composition to suit conditions of operation of grinding media. Journal of Friction and Wear, 2012. Vol. 33. №. 2. P. 153–159. doi: 10.3103/S1068366612020079.
13. Kumeda K., Nakamura H., Ohsaki S., Watano S., Fujiwara S., Iwami Y. and Murao A. Relationship between the agitation torque of the wet iron ore powder and pellet properties. ISIJ International, 2025. Vol. 65. № 1. P. 62–69. doi: 10.2355/isijinternational.ISIJINT-2024-281.
14. Kumar S., Singh M., Singh J. and et al. Rheological characteristics of uni/bi-variant particulate iron ore slurry: Artificial neural network approach. Journal of Mining Science, 2019. Vol. 55. № 2. P: 201–212. doi: 10.1134/S1062739119025468.
15. Mujumdar A. S. Drying in mineral processing. Handbook of Industrial Drying. 2nd ed., rev. and expanded. Vol. 2. A. S. Mujumdar, Ed. New York, NY, USA: Marcel Dekker, 1995. P. 921–929.
16. Sheehan M. E. A systems and resistance analysis of heat loss through an industrial flighted rotary ore dryer. Proc. 13th Int. Heat Transfer Conf. (IHTC-13), Kyoto, Japan, 2006. P. 9. doi: 10.1615/ IHTC13.p24.110.
17. Athayde M., Cota M. and Covcevich M. Iron ore pellet drying assisted by microwave: a kinetic evaluation. Mineral Processing and Extractive Metallurgy Review, 2018. Vol. 39. № 4. P. 266–275. doi: 10.1080/08827508.2017.1423295.
18. Souza A. S. E., de Souza Pinto T. C., Sarkis A. M., de Pádua T. F. and Béttega R. Energy Analysis of the Convective Drying of Iron Ore Fines. Chemical Industry and Chemical Engineering Quarterly, 2023. Vol. 29. №. 3. P. 189–200. doi: 10.2298/CICEQ220208026S.
19. Kurpe O. H., Kukhar V. V., Klimov E. S. and S. M. Chernenko. Improvement of process parameters calculation for coil rolling at the steckel mill. Proc. 2020 Int. Russian Conf. Materials Science and Metallurgical Technology (RusMetalCon), 2019. Vol. 989. P. 609–614. doi: 10.4028/ www.scientific.net/MSF.989.609.
20. Khrebtova O., Shapoval O., Markov O., Kukhar V., Hrudkina N. and Rudych M. Control systems for the temperature field during drawing, taking into account the dynamic modes of the technological installation. Proc. 2022 IEEE 4th Int. Conf. Modern Electrical and Energy Systems (MEES), Kremenchuk, Ukraine, 2022. P. 1–6. doi: 10.1109/MEES58014.2022.10005724.
21. Souza Pinto T. C., Souza A. S., Batista M. J. N., Sarkis A. M., Leal Filho L. S. and Pádua T. F. Characterization and drying kinetics of iron ore pellet feed and sinter feed. Drying Technology, 2021. Vol. 39. № 10. P. 1359–1370. doi: 10.1080/07373937.2020.1747073.
22. Patra A. S., Makhija D., Mukherjee A. K., Tiwari R., Sahoo C. R. and Mohanty B. D. Improved dewatering of iron ore fines by the use of surfactants. Powder Technology, 2016. Vol. 287. P. 43–50. doi: 10.1016/j.powtec.2015.09.030.
23. Forsmo S. P. E., Forsmo S.-E., Björkman B. M. T. and Samskog P.-O. Studies on the influence of a flotation collector reagent on iron ore green pellet properties. Powder Technology, 2008. Vol. 182. № 3. P. 444–452. doi: 10.1016/j.powtec.2007.07.015.
24. Kawatra S. K. and Claremboux V. Iron ore pelletization: Part I. Fundamentals. Mineral Processing and Extractive Metallurgy Review, 2022. Vol. 43. № 4. P. 529–544. doi: 10.1080/08827508.2021.1897586.
Published
2025-05-27
How to Cite
Kukhar, V., Chuprinov, E., & Navolniev, I. (2025). EFFECT OF FEED MIX PROPERTIES AND SURFACTANT APPLICATION ON ENERGY CONSUMPTION AND PRODUCTIVITY OF AN INDURATION MACHINE: INDUSTRIAL ASSESSMENT AND PREDICTIVE MODELLING. Scientific Journal "Metallurgy", (1), 121-132. https://doi.org/10.26661/2071-3789-2025-1-12