CURRENT STATION OF SCIENTIFIC AND TECHNICAL PROBLEMS IN THE INFLECTION OF CHEMICAL ELEMENTS ON THE INDICATORS OF THE INDICATORS OF THE INTELLIGENCE OF LIVARY ALLOYS BASED ON NICKEL
Abstract
A promising objective of modern scientific activity for young researchers** is the creation and production of competitive equipment, including gas turbine engines for aircraft and helicopters. Their development must be based on new-generation, energy-efficient, and resource-saving materials.Nickel–aluminum–chromium-based superalloys are critical materials for high-stress applications with highly efficient use in the aerospace sector, power generation, and transport industries. These alloys are distinguished by their ability to maintain creep resistance close to their melting temperatures and, overall, exhibit high strength.Single-crystal nickel superalloys are used in the aerospace industry as gas turbine blades, while wrought alloys are typically limited to turbine disks and auxiliary components. These alloys are specifically engineered to operate at high temperatures (above 600 °C), where most traditional materials lose their properties.Development of single-crystal heat-resistant nickel alloys with reduced density follows two primary approaches: optimizing chemical composition and reducing the content of heavy elements such as tungsten (W) and rhenium (Re), which allows for lower density without significantly compromising mechanical properties.The following alloys were analyzed (in wt.%): LDS-1101: Higher Co (9.85%) and Mo (7.1%) content enhances thermal strength; higher Re (2.95%) improves high-temperature creep resistance; significant Ta (6.25%) increases heat resistance but may raise density, LEK94: Higher Al (6.5%) and Ti (1.0%) promote γ'-phase formation (strengthening), but lack of Mo and high Ta content found in LDS-1101 are not fully compensated.Development of next-generation alloys involves numerous risks and challenges**, particularly in sourcing high-quality raw materials. This is one reason why substantial research into state-of-the-art nickel alloys is nearly impossible for individuals. Contributions to this field are typically made by large technological research companies in the defense or aerospace sectors, or by advanced research institutions.Typical 2nd-generation superalloys contain around 3 wt.% Re. In 3rd-generation alloys, this increases to approximately 6%. 4th-generation alloys include a small amount of Ru (5 wt.%).The concentrations of Ta, Co, Al, and W have remained relatively stable over time, while Mo and Ti are used in minor quantities. Cr content decreased through successive generations but increased again in the 6th-generation TMS-238 alloy and in low-Re superalloys.
References
2. Дмитренко Е.Д. Основні напрями розвитку авіаційної промисловості України. Проблеми підвищення ефективності інфраструктури, 2010. № 25. С. 1–6.
3. Weber J.H. Nickel-based Superalloys: Alloying Methods and Thermomechanical Processing. Encyclopedia of Materials: Science and Tech№logy (Second Edition), 2001. Р. 6149 – 6153.
4. Giridhar Gudivada, Ajoy Kumar Pandey. Recent developments in nickel-based superalloys for gas turbine applications: Review. Journal of Alloys and Compounds, 2023. Volume 963. Р. 171-182.
5. Yufei Wei, Shiyao Chen, Yancheng Jin, Mingzong Zhang, Qin Li a, Yanbin Jiang, Lei Guan, Lijun Zhang. Effect of Al/Cr addition on microstructure and mechanical properties of Ni-rich niti№l alloys. Journal of Materials Research and Tech№logy, 2025. Volume 36. P. 4490-4500.
6. Mulberry J. Care program. Flight international, 2010. P. 41.
7. Gebura M. Chemical Composition and Classification of Single Crystal. Materialing, 2009.
8. Dev Jithin S., Senthil Kumaran Selvaraj, K. E. Vijay Vishaal, and Sundaramali G. Comparative Analysis between 5th and 6th Generation Superalloys and Previous Generation Superalloys. Hindawi. Advances in Materials Science and Engineering, 2022. Volume 2022. Р. 3-21.
9. Sato A., Harada H., Yeh A. C. et al. A 5th generation SC superalloy with balanced high temperature properties and processability. Superalloys 2008 (Eleventh International Symposium). Р.131–138.
10. Kawagishi K., Sato A., and Harada H. A concept for the EQ coating system for Nickel-based superalloys. Journal of Occupational Medicine, 2008. Vol. 60. № 7. Р. 31–35.
11 Yokokawa T., Harada H., Kawagishi K., Kobayashi T., Yuyama M., andTakata Y. Advanced Alloy Design Program and Improvement of Sixth-Generation Ni-Base Single Crystal Superalloy TMS-238. Springer International Publishing. Berlin, Germany, 2020. P.122–130.
12. Sowa R., Arabasz S., and Parlinska-Wojtan M. Classification and microstructural stability of high generation single crystal Nickel-based superalloys. Zastita materijala, 2016. Vol. 57. № 2. Р. 274–281.
13. Yuan Y., Kawagishi K., Koizumi Y., Kobayashi T., Yokokawa T. and Harada H. Creep deformation of a sixth generation Ni-base single crystal superalloy at 800° C. Materials Science and Engineering, 2014. Vol. 608. Р. 95–100.
14. Zhang J. X., Murakumo T., Harada H., Koizumi Y., and Kobayashi T. Creep deformation mechanisms in some modern single-crystal superalloys. Superalloys 2004 (Tenth International Symposium), 2004. Р. 189.
15. Petrushin N.V., Elyutin E.S., Visik E. M. and Golynets S.A. Development of a single-crystal fifth-generation nickel superalloy. Metallurgy, 2017. Vol. 17. Р. 936–947.
16. Corrosion H. Hot corrosion. Miner. Met. Mater. Ser, 2019. Р. 340–360.
17. Kawagishi K., Sato A., Harada H., Yeh A.C., Koizumi Y. and Kobayashi T. Oxidation resistant Ru containing Ni base single crystal superalloys. Materials Science and Tech№logy, 2009. Vol. 25. № 2. Р. 271–275.
18. Tabata C., Kawagishi K., Uzuhashi J.et al. Quantitative analysis of sulfur segregation at the oxide/substrate interface in Ni-base single crystal superalloy. Scripta Materialia, 2021. Vol. 194. Р. 113616.
19. Chan J.S, Ferrand H.L. Assessment of nacre-like ceramics in replacement to Ni superalloys in aircraft's engines. Submitted on 23 №v 2021.
20. Nikolai A. Zarkevich, Timothy M. Smith and John W. Lawson Energy-Composition Relations in Ni3(Al1−xXx) Phases. Crystals, 2023. № 13. 10 р.
21. Financial Times ‘’The Opec of nickel’’: Indonesia’s control of a critical metal. URL: https://www.ft.com/content/0bbbe7c7-12a1-43ba-8bef-c5c546367a0e
22. Anglo American to sell its nickel business to China's MMG. URL: https://www.seaisi.org/details/26226?type=news-rooms
23. Kablov E.N., Demonis I.M. *Promising Tech№logical Processes for Casting Gas Turbine Engine Blades* // *Aviation Materials. Selected Works of VIAM 1932–2002* / Edited by E.N. Kablov. Moscow: MISIS, VIAM, 2002. Р.58–70.
24. Koizumi Y. Development of next-generation Ni-base single crystal super alloys. Super alloys 2004. Champion (Pennsylvania): Minerals, Metals & Materials Society, 2004. P. 35−43.
25. High Temperature Materials Center National Institute for Materials Science. Materials Tech№logy Department, Aero-Engine & Space Operations Ishikawajima-Harima Heavy Industries co., Ltd. Fourth generation nickel base single crystal super alloy TMS-138 / 138A. Tokyo (Japan): NIMS and IHI. July 2006. P.6. http://sakimori.nims.go.jp/catalog/TMS-138-A.pdf
26. Akihiro Sato, Hiroshi Harada, Toshiharu Kobayashi, Takao Murakumo. Fifth generation nickel base single crystal super alloy TMS-196. Journal of the Japan Institute of Metals and Materials, July February 2006. P.196-199.
27. Kablov E.N. New Generation Nickel Heat-Resistant Alloys. Aviation Materials and Tech№logy, 2012, №. 6, Р.36–52.
28. Kablov E.N., Petrushin N.V., Svetlov I.L. Computer Design of a Fourth-Generation Heat-Resistant Nickel Alloy for Single-Crystal Gas Turbine Blades. Cast Heat-Resistant Alloys. The S.T. Kishkin Effect / Edited by E.N. Kablov. Moscow: Nauka, 2006, Р.98–115.
29. Uwe Prof. Dr. Glatzel Thomas Dr. Mack Silke Dr. Wöllmer Jürgen Dr. Wortmann Nickel-Basislegierung für die gießtechnische Herstellung einkristallin erstarrter Bauteile: pat. DE10100790A1 / T. Mack [et al.]; publ. 18.07.02.
30. Rebecca A. Mac Kay Timothy P. Gabb James L Smialek Michael V. Nathal Low density, high creep resistant single crystal super alloy for turbine airfoils: pat. US7261783 / R.A. MacKay [et al.]; publ. 28.08.07.
31. Ospennikova O.G. Trends in the Development of Low-Density Heat-Resistant Nickel Alloys with Polycrystalline and Single-Crystal Structures (Review). Aviation Materials and Tech№logy, 2016, №. 1 (40), Р.3–9.
32. Paton B.E. Heat Resistance of Cast Nickel Alloys and Their Oxidation Protection / B.E. Paton [et al.]. Kyiv: Naukova Dumka, 1987. 256 pages.
33. Shalin R.E. Single Crystals of Heat-Resistant Nickel Alloys. Mashinostroenie, 1997. 336 pages.
34. Kablov E.N. Cast Heat-Resistant Alloys. Mechanical Engineering Encyclopedia. Mashinostroenie, 2001. Vol. II-3: Non-Ferrous Metals and Alloys. Composite Materials. pp. 519−552.
35. Chester T. Sims, Norman S. Stoloff, Wiliam C. Hegel. Superalloys II. High-Temperature Materials for Aerospace and Industrial Power. 1nd Edition. Wiley-Interscience, 1987. 320 р.
36. Kablov E.N., Svetlov I.L., Petrushin N.V. Nickel Heat-Resistant Alloys for Casting Blades with Directed and Single-Crystal Structures (Part I). Materials Science, 1997. №. 4. Р. 32–38.
37. Kablov E.N., Svetlov I.L., Petrushin N.V. Nickel Heat-Resistant Alloys for Casting Blades with Directed and Single-Crystal Structures (Part II). Materials Science, 1997. № 5. Р. 14–22.
38. Chester T. Sims, Norman S. Stoloff, Wiliam C. Hegel. Superalloys II. Superalloys II. High-Temperature Materials for Aerospace and Industrial Power. 2nd Edition. Wiley-Interscience, 1987. 330 р.
39. Rae C.M.F. Topologically close packed phases in an experimental rhenium-containing single crystal super alloy. Super alloys 2000. Champion (Pennsylvania): Minerals, Metals & Materials Society, 2000. P. 767−776.
40. Rae C.M.F., Reed R.C. The precipitation of topologically close-packed phases in rhenium-containing super alloys. Acta Materialia, 2001. Vol. 49. № 10. P. 4113–4125.
41. Кишкин С.Т. Создание, исследование и применение жаропрочных сплавов. Москва: Наука, 2006. 407 c.
42. Acharya M.V., Fuch G.E. The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base super alloys. Materials Science Engineering A, 2004. Vol. 381. P. 143−153.
43. Davood Safaeian, Mohammad Vaezi. Investment Casting of Gas Turbine Blade by Used of Rapid Technologies. July 2009AUSTRALIAN JOURNAL OF BASIC AND APPLIED SCIENCES 3(3):2979-2988.
44. Mohit Sigirisetty. Role of Additive Manufacturing in Investment Casting Process. April 2022. International Journal for Research in Applied Science and Engineering Technology 10(4). DOI:10.22214/ijraset.2022.41227
45. Sato A., Harada H., Kobayashi T., Murakumo T., Zhang J. and Yokokawa T. Fifth generation Ni-based single crystal superalloy with excellent oxidation resistance and creep strength. Journal of the Japan Institute of Metals, 2006. Vol. 70. №. 2. P. 196–199.
46. Kitashima T., Harada H., Ping D. H. and Kobayashi T. Atom probe investigation of ruthenium distributions around rhenium, molybdenum and tungsten in a gamma phase ofт5th-generation nickel- base single-crystal superalloys. Materials Transactions, 2007. Vol. 48, №. 3. Р. 566–569.
47. Wee S., Do J., Kim K.et al. Review on mechanical thermal properties of superalloys and thermal barrier coating used in gas turbines. Applied Sciences, 2020. Vol. 10. P. 5476–16.
48. Koizumi Y., Jianxin Z., Kobayashi T. et al. Development of next generation Ni-base single crystal superalloys containing ruthenium. Journal of the Japan Institute of Metals, 2003. Vol. 67. № 9. P. 468–471.
49. Kobayashi T., Koizumi Y., Harada H. et al. Influence of alloying elements on the creep strength of a 5th generation single crystal superalloy TMS-173. Journal of the Japan Institute of Metals, 2005. Vol. 69. № 2. Р. 241–244.
50. Chen C., Wang Q., Dong C., Zhang Y., and Dong H. Composition rules of Ni-base single crystal superalloys and its influence on creep properties via a cluster formula approach. Scientific Reports, 2020. Vol. 10. Article ID 21621.
51. Helbig C., Bradshaw A. M., Thorenz A. and Tuma A. Supply risk considerations for the elements in nickel-based superalloys. Resources, 2020. Vol. 9. P. 106–116.
52. Sivakumar S., Senthil Kumaran S., Uthayakumar M. and Daniel Das A., Garnet and Al-8yash composite under dry sliding conditions. Journal of Composite Materials, 2018. Vol. 52. №. 17. P. 2281–2288.
53. Huang M. and Zhu J. An overview of rhenium effect in single-crystal superalloys/ Rare Metals, 2016. Vol. 35. № 2. P. 127–139.