LOW-TEMPERATURE PROCESSES OF OBTAINING BORONCARBON COMPOSITE MATERIALS
Abstract
An approach based on the method of obtaining boron hydrides and determining the rate constant of diborane decomposition in a flow thermochemical reactor of the isobaric type under the conditions of deposition of a solid precipitate as crystalline boron on the surface of carbon fibers is outlined. An isobaric thermochemical reactor provides controlled reaction conditions by maintaining a constant pressure inside the reactor. This makes it possible to stabilize the reaction mode and ensure uniform distribution of reagents in the system. The method of determining the diborane decomposition rate constant is based on the analysis of the dynamics of the formation of crystalline boron on the surface of carbon fibers. With the help of experiments and mathematical modeling, the dependences between the reaction conditions, the rate of decomposition of diborane and the deposition of crystalline boron are established. The obtained results make it possible to optimize the process of obtaining boron hydrides by adjusting the reaction conditions and choosing the optimal parameters of the reactor. This can lead to an improvement in the quality of the boron hydrides, providing higher product purity and uniformity. Deposition of crystalline boron on the surface of carbon fibers helps to avoid impurities and impurities that can affect the properties of boron hydrides. In addition, the use of a flow thermochemical reactor of the isobaric type allows to ensure stable reaction conditions, which contributes to the uniform formation of the product. The proposed approach for obtaining boron hydrides and determining the rate constant of diborane decomposition in a flow thermochemical reactor of the isobaric type with deposition of crystalline of boron on the surface of carbon fibers opens up prospects for improving the quality of these materials and developing their use in various fields of science and technology.
References
Машиностроение, 1988. 448 с.
2. Портной К.И., Салибеков С.Е., Светлов И.Л., Чубаров В.К. Структура и свойства компо-
зиционных материалов. Москва : Машиностроение, 1979. 252с.
3. Конкин А.А. Углеродные и другие жаростойкие волокнистые материалы. Москва :
Химия, 1972. 375с.
4. Жигач А.Ф, Станисевич Д.С. Химия гидридов. Ленинград : Химия, 1969. 676 с.
5. Девятых Г.Г., Зорин А.Д. Летучие неорганические гидриды особой чистоты. Москва :
Наука, 1974. 206 с.
6. Сурис А.Л. Термодинамика высокотемпературных процессов. Москва : Металлургия,
1985. 565 с.
7. Денисов Е.Т. Кинетика гомогенных химических реакций. Москва : Высшая школа, 1988.
392 с.
8. Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. Москва :
Наука, 1967. 491 с.